First Enantioselective Synthesis of Daphneticin

Xin Feng REN, Kun PENG, Xiao Chuan CHEN, Xin Gang XIE, Ya Mu XIA, Xin Fu PAN*
Department of Chemistry, National Laboratory of Applied Organic Chemistry,
Lanzhou University, Lanzhou 730000

Abstract: An enantioselective total synthesis of chiral daphneticin is reported firstly.
Keywords: Synthesis, enantioselective, coumarinolignoids, daphneticin.

Coumarinolignoids are a relatively new and rare group of natural products arising from $\mathrm{C}_{6}, \mathrm{C}_{3}, \mathrm{C}_{6}$ units. The coumarin moieties are linked with the phenyl propanoid units through a 1,4-dioxane bridge in these molecules ${ }^{1}$. Because of their various biological activities, especially their cytotoxicity and antihepatotoxic activities ${ }^{2}$, several efficient synthesises of natural coumarinolignoids have been reported ${ }^{3}$.

Daphneticin $\mathbf{1}$ has been isolated ${ }^{2}$ from roots and stems of Daphne tangutica. As a coumarinolignoid, it showed ${ }^{4}$ cytotoxic activity in vitro in the Walker-256- carcino-sarcoma-ascites system. However, Cordell and Lin^{5} recently published that the structure of daphneticin would be revised formula 1 by application of the selective INEPT pulse programme of the daphneticin diacetate. Although several synthesises of daphneticin were reported, it is a pity that so far chiral synthesis of daphneticin has not been reported.

1

2

In our previous work ${ }^{6}$, a first asymmetric and regioselective synthetic approach to 1,4-benzodioxane lignans was reported. In continuation of our studies, now we wish to report an enantioselective synthesis of daphneticin 1.

[^0]As shown in Scheme 1, 7-acetoxycoumarin 4 was prepared by acetylation of 7-hydroxycoumarin 3 with $\mathrm{Ac}_{2} \mathrm{O}$. Treatment of $\mathbf{4}$ with AlCl_{3} under $160^{\circ} \mathrm{C}$ gave 8 -acetyl-7-hydroxycoumarin $\mathbf{5}^{7}$. Then, compound $\mathbf{7}$ was prepared by benzylation of compound $\mathbf{5}$ followed by treatment with hydrogen peroxide in alkaline dioxane solution. By acetylation, compound $\mathbf{7}$ was converted to the compound $\mathbf{8}$ that was subjected to catalytic hydrogenation yielding a debenzylation product 9 .
Treatment of compound $\mathbf{1 0}$ with piperidine and water gave 4-hydroxy- 3,5-dimethoxybenzaldehyde $\mathbf{1 1}^{8}$. Reacted with monoethyl malonate ${ }^{9}$ under pyridine and piperidine, aldehyde $\mathbf{1 1}$ was converted to an unsaturated ester ${ }^{10}$. Protection of the unsaturated ester with benzyl bromide afforded the benzyl ether $\mathbf{1 2}$ that was reduced to afford the corresponding alcohol $\mathbf{1 3}^{11}$.

Scheme 1

 vi

12

11
13

(2S, 3S)-18
(2S, 3S)-1

[^1]Asymmetric dihydroxylation of $\mathbf{1 3}$ by AD-mix- β afforded (1R, 2R)-14 in 93% e.e. ${ }^{12}$. Reaction of ($1 \mathrm{R}, 2 \mathrm{R}$)-14 with TsCl in pyridine provided primary tosylate ($1 \mathrm{R}, 2 \mathrm{R}$)-15. Ring closure of $(1 \mathrm{R}, 2 \mathrm{R})-\mathbf{1 5}$ was promoted by potassium carbonate in methanol, generating oxirane ($1 \mathrm{R}, 2 \mathrm{R}$)-16 ${ }^{13}$. A characterized ether ($1 \mathrm{~S}, 2 \mathrm{R}$) $\mathbf{- 1 7}$ was obtained by Mitsunobu reaction ${ }^{14}$ between (1R, 2R)-16 and compound 9 . The absolute configuration of the C_{1}-position was inversed completely by an S_{N} 2-type nucleophilic displacement of 8-acetoxy-7-hydroxycoumarin in this reaction. Removal of acetyl group in (1S, 2R)-17 followed by intramolecular cyclization with potassium carbonate in methanol afforded (2S, 3S)-18. In this reaction, an intramolecular nucleophilic attack at C_{2}-position of oxirane by the phenol hydroxyl in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ led to a complete inversion of the absolute configuration of the C_{2}-position and the formation of 1,4-benzodioxane ${ }^{15}$. The benzyl group was removed by hydrogenolysis under an atmospheric pressure of hydrogen in the presence of 5% palladized charcoal in ethyl acetate to afford (2S, 3S)-1 ${ }^{17}$. In the ${ }^{1} \mathrm{H}$ NMR spectrum of (2S, 3S)-1, H-2 resonated a doublet signal at $\delta 5.11$ with a coupling constant $(J=7.9 \mathrm{~Hz})$ indicating a typical of trans-isomer and threo configuration. ${ }^{13} \mathrm{C}$ NMR spectrum showed $\delta 61.4,77.679 .6$ indicating a six-membered 2-aryl-3-hydroxymethyl-1,4-benzodioxane skeleton ${ }^{16}$.

We have carried out the enantioselective synthesis of daphneticin (1) in 16.5% yield. All spectrum data were in agreement with those found in the literature ${ }^{2,3 c, 3 d}$. This is the first enantioselective synthesis of coumarinolignoids.

Acknowledgments

Support from the National Natural Science Foundation of China (No. 29972015; 20172023) is gratefully acknowledged.

References and Notes

1. A. Chatterjee, P. C. Das, P. C. Joshi, S. Mandal, J. Indian Chem. Soc., 1994, 71, 475.
2. L. G. Zhuang, O. Seligmann, H. Wagner, Phytochemistry, 1983, 22, 617.
3. (a) L. J. Lin, G. A. Cordell, J. Chem. Soc., Chem. Commun., 1984, 160. (b) H. Tanaka, I. Kato, K. Ito, Chem. Pharm. Bull., 1985, 33(8), 3218. (c) H. Tanaka, I. Kato, K. Ito, Chem. Pharm. Bull., 1986, 34(2), 628. (d) H. Tanaka, M. Ishihara, K. Ichino, K. Ito, Heterocycles, 1987, 26(12), 3115. (e) H. Tanaka, M. Ishihara, K. Ichino; K. Ito, Chem. Pharm. Bull., 1988, 36 (5), 1738. (f) H. Tanaka, M. Ishihara, K. Ichino, K. Ito, Chem. Pharm. Bull., 1988, 36 (10), 3833. (g) H. Tanaka, M. Ishihara, K. Ichino, K. Ito, Heterocycles, 1988, 27 (11), 2651.
4. L. G. Zhuang, O. Seligmann, K. Jurcic, H. Wagner, Planta Medica, 1982, 45, 172.
5. L. J. Lin, G. A. Cordell, J. Chem. Soc., Chem. Commun., 1986, 377.
6. W. X. Gu, X. C. Chen, X. F. Pan, Albert S. C. Chan, T. K. Yang Tetrahedron: Asymmetry, 2000, 11, 2801.
7. A. Russell, J. R. Frye, Org. syn., 1955, (III), 281.
8. A. J. Quillinan, F. Scheinmann, J. Chem. Soc. (C), 1973, 1329.
9. R. E. Strube, Org. syn., 1957, 37, 34,
10. G. Alexander, J. Am. Chem. Soc., 1946, 68, 376.
11. P. Y. Ding, D. Q. Yu, Chinese Journal of Medicinal Chemistry, 1995, 5 (1), 59.
12. K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Xu, X. L. Zhang, J. Org. Chem. 1992, 57, 2768.
13. R. J. Bergeron, R. Muiler, J. S. Mcmanis, G. W. Yao, G. F. Huang, Synthesis, 2001, 7, 1043.
14. O. Mitsunobu, Synthesis, 1981, 1.
15. T. Ganesh, G. L. D. Krupadanam, Syn. Commun., 1998, 28 (16), 3121.
16. Y. Fukiyama, T. Hasegawa, M. Toda, M. Kodama, Chem. Pharm. Bull., 1992, 40 (1), 252.
17. (2S, 3S)-Daphneticin 1: white solid; $[\alpha]_{D}^{25}+11\left(c 1.40, \mathrm{CHCl}_{3}\right)$. M.p. $229-231^{\circ} \mathrm{C}$. MS (EI): $386\left(\mathrm{M}^{+}\right), 368,353,277,209,177,167,149,43 .{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{D}_{6}$-acetone): $\delta 3.74$ (m, $2 \mathrm{H}), 3.88(\mathrm{~s}, 6 \mathrm{H}), 4.25(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 6.27(\mathrm{~d}, 1 \mathrm{H}, J=9.4 \mathrm{~Hz}), 6.67(\mathrm{~s}, 2 \mathrm{H})$, $7.14(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $(50 \mathrm{MHz}$, D_{6}-acetone): $\delta 56.6,61.4,76.5,78.6,106.1,114.6,121.5,125.1,130.7,138.9,144.6,145.9$, 148.9, 160.5. IR (KBr/cm ${ }^{-1}$): 3449, 1713, 1609, 1456, 1334, 1271, 1130, 1063, 835. (Found: C, 62.23; $\mathrm{H}, 4.68 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{8}$ requires $\mathrm{C}, 62.17 ; \mathrm{H}, 4.66 \%$).

Received 15 July, 2002

[^0]: *E-mail: panxf@lzu.edu.cn

[^1]: Reagents and conditions: (i) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, r.t., $24 \mathrm{~h}, 97 \%$; (ii) $\mathrm{AlCl}_{3}, 160^{\circ} \mathrm{C}, 2 \mathrm{~h}, 79 \%$; (iii) BnBr , $\mathrm{K}_{2} \mathrm{CO}_{3}, 24 \mathrm{~h}, 94 \%$; (iv) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, 20 \mathrm{~min}, 94 \%$; (v) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, r.t., $24 \mathrm{~h}, 90 \%$; (vi) Pd / C (5\%), H_{2}, EtOAc, r.t., $6 \mathrm{~h}, 92 \%$; (vii) piperidine, $\mathrm{H}_{2} \mathrm{O}$, reflux, $48 \mathrm{~h}, 80 \%$; (viii) 1) $\mathrm{CO}_{2} \mathrm{HCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, pyridine, piperidine, reflux, 6 h ; 2) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}, 24 \mathrm{~h}, 80 \%$; (ix) $\mathrm{LAH}, \mathrm{AlCl}_{3}, \mathrm{THF}, 0.5 \mathrm{~h}, 86 \%$; (x) AD-mix- $\beta, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, t$ - $\mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 20 \mathrm{~h}, 87 \%$; (xi) TsCl , pyridine, 91%; (xii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , r.t., $3 \mathrm{~h}, 80 \%$; (xiii) DIAD, $\mathrm{Ph}_{3} \mathrm{P}$, THF, r.t., $24 \mathrm{~h}, 65 \%$; (xiv) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , r.t., $3 \mathrm{~h}, 90 \%$; (xv) $\mathrm{Pd} / \mathrm{C}(5 \%), \mathrm{H}_{2}$, EtOAc, r.t., 6 h, 81%.

